Laboratory 5 (w11-14)

2020/2021

Microwave Devices and Circuits

MDC Project

Assignment

- Design a low-noise multi-stage transistor amplifier required to provide a power gain of G [dB] and a noise factor of F [dB] at the design frequency f [GHz].
- At the output of the amplifier insert a order N bandpass filter with fractional bandwidth of the passband B [%] around the design frequency.

Assignment

- The matching networks and filter must be implemented with transmission lines (stubs: L7-L8).
- The use of the transistors we used in lectures and laboratories examples is not permitted (NE 71084, ATF 34143)
- Delivery deadline: last day of the semester (o6.06.2021, 23:59:59)

 this structure is frequently encountered in radiocommunication systems

Multistage amplifiers

- Interstage matching can be designed in two modes:
 - Each stage is matched to a virtual Γ = o

Multistage amplifier design

The design for input and output matching must be achieved on a single transistor schematic (recommended: easier)

Interstage matching

 One of the stages creates through its matching network a refflection coefficient Γ=o towards which the other stage is matched

Interstage matching

The two shunt stubs combine into a single one

- Split performance parameters on the 2 stages
 - G
 - F
- Uses Friis formula
- Pt. 3 example

$$G_{cas} = G_1 \cdot G_2$$
 $F_{cas} = F_1 + \frac{1}{G_1} (F_2 - 1)$

2 equations, 4 unknowns, multiple solutions

Friis Formula (noise)

$$G_{cas} = G_1 \cdot G_2$$
 $F_{cas} = F_1 + \frac{1}{G_1} (F_2 - 1)$

Friis formula

- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- It's essential to introduce a design margin (reserve: ΔF , ΔG)

•
$$G = G_{design} + \Delta G$$

•
$$F = F_{design} - \Delta F$$

- Interpretation of the design target
 - G > G_{design}, better, but it's not required to sacrifice other parameters to maximize the gain
 - F < F_{design}, better, the smaller the better, we must target the smallest possible noise factor as long as the other design parameters are met

Friis Formula (noise)

Friis formula

- first stage: low noise factor, probably resulting in a smaller gain
- second stage: high gain, probably resulting in higher noise factor
- Division between the two stages (Estimated!)
 - input stage: F1 = 0.7 dB, G1 = 9 dB
 - output stage: F2 = 1.2 dB, G2 = 13 dB
- To verify the result apply Friis formula

First transform to linear scale !

$$F_{1} = 10 \frac{F_{1}[dB]}{10} = 10^{0.07} = 1.175$$

$$F_{2} = 10 \frac{F_{2}[dB]}{10} = 10^{0.12} = 1.318$$

$$F_{2} = 10 \frac{F_{2}[dB]}{10} = 10^{0.12} = 1.318$$

$$F_{cas} = F_{1} + \frac{1}{G_{1}}(F_{2} - 1) = 1.215$$

$$F_{cas} = 10 \cdot \log(1.215) = 0.846 \ dB$$

$$G_{1} = 10 \frac{G_{1}[dB]}{10} = 10^{0.9} = 7.943$$

$$G_{2} = 10 \frac{G_{1}[dB]}{10} = 10^{0.9} = 7.943$$

$$G_{2} = 10 \frac{G_{1}[dB]}{10} = 10^{1.3} = 19.953$$

$$G_{cas} = G_{1} \cdot G_{2} = 158.49$$

$$F_{cas} = 10 \cdot \log(1.215) = 0.846 \ dB$$

$$G_{cas} = 10 \cdot \log(158.49) = 22 \ dB$$

Friis Formula (noise)

Avago/Broadcom AppCAD

		- F	-1-		/340-1121-112					
NoiseCalc	Set	Number of Stag	ges	= 2	Ualcul	ate [F4]				
			-		Stage 1	Stage	e 2	1		
		Stage Data		Units		A36	>-			
		Stage Name	:		Avago Duplemer	Ava ATE-3	go 0XXX			
		Noise Figure		dB	0.	7	1.2			
		Gain Output IP3 dNF/dTemp dG/dTemp		dB		9	13			
				dBm	10	0	14.5			
				dB/°C		0	0			
				dB/°C		0	0			
		Stage Analys]		
		NF (Temp co	NF (Temp corr)		0.7	0	1.20			
		Gain (Temp corr) Input Power		dB	9.0	0	13.00			
				dBm	-50.0	0 -	41.00			
		Output Power d NF/d NF d NF/d Gain		dBm	-41.0	о -	28.00			
				dB/dB	0.9	17	0.15			
				dB/dB	-0.0	3 0.0				
		d IP3/d IP3		dBm/dBm	0.0	0	1.00			
Enter System Paramete	ers:		Sys	tem Analysia.						
Input Power	-50	dBm		Gain =	22.00	dB		Input IP3 =	-7.50	dBm
Analysis Temperature	e 25	°C	N	oise Figure =	0.85	dB		Output IP3 =	14.50	dBm
Noise BW	1	MHz	N	oise Temp -	02.04	°К		Input IM level =	-135.00	dBm
Ref Temperature	25	°C		SNR =	63.13	dB		Input IM level =	-85.00	dBC
S/N (for sensitivity)	10	dB		MDS =	-113.13	dBm	0	utput IM level =	-113.00	dBm
Noise Source (Ref)	290	۴K		Sensitivity =	-103.13	dBm	0	utput IM level =	-85.00	dBC
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	146	10	N	Noise Floor =	-173.13	dBm/Hz		SFDB =	70.42	dB

Result:

- first amplifier G1/F1
- second amplifier G2/F2

- Choose appropriate transistor(s) (Gi/Fi)
- Time consuming
- Depending on the design frequency :
 - bipolar
 - unipolar
- Starting from selection guides recommended
- Pt. 5 example

Few selection guides available on rf-opto -> Google: microwave/rf transistor, low noise, LNA

Part Number	Gate Width (µm)	Frequency Range (GHz)	Test Freq. (GHz)	V _{dd} (V)	l _{dd} (mA)	NF _o (dB)	G _a (dB)	OIP3 (dBm)	P _{1 dB} (dBm)	Package	
ATF-33143	1600	0.45 - 6	2	4	80	0.5	15.0	33.5	+22	SOT-343 (SC-70)	
ATF-331M4	1600	0.45 - 6	2	4	60	0,6	15.0	31	+19	MiniPak ^[2]	
ATF-34143	800	0.45 - 6	2	4	60	0.5	17.5	31.5	+20	SOT-343 (SC-70)	
ATF-35143	400	0.45 - 6	2	2	15	0.4	18.0	21	+10	SOT-343 (SC-70)	
ATF-38143	800	0.45 - 6	2	2	10	0.4	16.0	22	+12	SOT-343 (SC-70)	
ATF-36077	200	1.5 - 18	12	1.5	10	0.5	12.0	2 2	+5	70 mil SM	
ATE-36163	200	15-18	12	15	15	12	10.0		+5	SOT-363 (SC-70)	

Low Noise pHEMTs (Typical Specifications @ 25°C Case Temperature)

- Take into account the typical variation of the parameters to estimate from test frequency to design frequency
 - Noise factor increases with increasing frequency

Result

- candidate T1: ATF34143
- candidate T2: NE71084

- Obtain model data for the candidate transistor(s)
- Most often S parameter files (Touchstone)
- Google, manufacturer site: S2p files, S parameters etc.

Investigate the transistor

- schematic 1/lab 3-4
- compute some values (check G/F at design frequency)
- compute some circles (position, diameter)
- estimate/choose GS/GL
 - similar to lab3-4
 - for each transistor
- Pt. 7 example

introduce a succession of multiple S parameter files and simulate (repeatedly)

Result

- candidate T1: ATF34143 la 3V, 20MA, GS1 = ~ ... dB, GL1 = ~ ...dB
- candidate T2: NE71084 la 3V, 1MA, GS2 = ~ ... dB, GL2 = ~ ...dB

- For each transistor:
- Design of the input matching network
 - schematics 1~2/lab 3-4
- circles on the Smith Chart
 - stability circle
 - noise circle(s) (~chosen F)
 - gain circle(s) (~chosen GS)
- Pt. 8 example

- Use a marker to get the value of the reflection coefficient Γ_s
 - draw a dummy circle to have a point for the marker

- Calculate the electrical lengths of the two series/parallel lines according to the examples in the course/project
 - write down (on paper) the computation (!!"andrei" factor)

Result:

- electrical length E1, E2
- for each transistor

- For each transistor:
- Design of the output matching network
 - schematics 1~2/lab 3-4
- circles on the Smith Chart
 - stability circle
 - noise circle(s) (~chosen F)
 - gain circle(s) (~chosen GL)
- Pt. 9 example

 Use a marker to get the value of the reflection coefficient Γ_L

- Calculate the electrical lengths of the two series/parallel lines according to the examples in the course/project
 - write down (on paper) the computation (!!"andrei" factor)

Result:

- electrical length E₃, E₄
- for each transistor

- For each transistor
- Check E1, E2, E3, E4
- Insert lines E1, E2 as the input network and E3, E4 as the output network and check if the proposed G / NF results are obtained.
 - Check and repeat the calculations

Point non-existent in the example

freq, GHz

freq, GHz

- Result
 - adopted T1: ATF34143 la 3V, 20MA, GS1 = ... dB, GL1 = ...dB
 - adopted T2: NE71084 la 3V, 1mA, GS2 = ... dB, GL2 = ...dB

Interstage matching

The two shunt stubs combine into a single one

Case 1, Shunt Stub

Shunt Stub

Shunt stub matching, L7

Analytical solution, usage

$$\cos(\varphi + 2\theta) = |\Gamma_s|$$

$$\theta_{ss} = \beta \cdot l = \cot^{-1} \frac{\mp 2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}}$$

 $\Gamma_{\rm s} = 0.555 \angle -29.92^{\circ}$ $|\Gamma_s| = 0.555; \quad \varphi = -29.92^\circ \quad \cos(\varphi + 2\theta) = 0.555 \Rightarrow (\varphi + 2\theta) = \pm 56.28^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
 - "+" solution $\begin{array}{l} \textbf{``+`' Solution} \\ (-29.92^{\circ} + 2\theta) = +56.28^{\circ} \\ \theta = 43.1^{\circ} \\ \textbf{Im} z_{s} = \frac{+2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = +1.335 \\ \theta_{ss} = -\cot^{-1}(\text{Im} z_{s}) = -36.8^{\circ}(+180^{\circ}) \rightarrow \theta_{ss} = 143.2^{\circ} \end{array}$

 - "-" solution $(-29.92^\circ + 2\theta) = -56.28^\circ$ $\theta = -13.2^\circ(+180^\circ) \rightarrow \theta = 166.8^\circ$ $\operatorname{Im} z_{s} = \frac{-2 \cdot |\Gamma_{s}|}{\sqrt{1 - |\Gamma_{s}|^{2}}} = -1.335 \qquad \theta_{ss} = -\operatorname{cot}^{-1}(\operatorname{Im} z_{s}) = 36.8^{\circ}$

Analytical solution, usage

$$(\varphi + 2\theta) = \begin{cases} +56.28^{\circ} \\ -56.28^{\circ} \end{cases} \theta = \begin{cases} 43.1^{\circ} \\ 166.8^{\circ} \end{cases} \operatorname{Im}[z_{s}(\theta)] = \begin{cases} +1.335 \\ -1.335 \end{cases} \theta_{ss} = \begin{cases} -36.8^{\circ} + 180^{\circ} = 143.2^{\circ} \\ +36.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation

$$l_{1} = \frac{43.1^{\circ}}{360^{\circ}} \cdot \lambda = 0.120 \cdot \lambda$$

$$l_{2} = \frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.398 \cdot \lambda$$

$$l_{2} = \frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.398 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

Laboratorul de microunde si optoelectronica
http://rf-opto.etti.tuiasi.ro
rdamian@etti.tuiasi.ro